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Abstract

Models in reinforcement learning are often estimated from o✏ine data, which in many real-
world scenarios is subject to partial observability. In this work, we study the challenges
that emerge from using models estimated from partially-observable o✏ine data for policy
evaluation. Notably, a complete definition of the models includes dependence on the data-
collecting policy. To address this issue, we introduce a method for model estimation that
incorporates importance weighting in the model learning process. The o↵-policy samples
are reweighted to be reflective of their probabilities under a di↵erent policy, such that the
resultant model is a consistent estimator of the o↵-policy model and provides consistent
estimates of the expected o↵-policy return. This is a crucial step towards the reliable
and responsible use of models learned under partial observability, particularly in scenarios
where inaccurate policy evaluation can have catastrophic consequences. We empirically
demonstrate the e�cacy of our method and its resilience to common approximations such
as weight clipping on a range of domains with diverse types of partial observability.

Keywords: Partial Observability, Model Misspecification, O↵-Policy Evaluation

1. Introduction

Many recent successes of reinforcement learning have been facilitated by the use of models
(Degrave et al., 2022; Mirhoseini et al., 2020; Mannion et al., 2016; Schrittwieser et al.,
2020). Models provide the ability to predict the downstream e↵ects of current decisions,
which is useful in many problems such as control, planning, aiding directed exploration and
performing policy evaluation. However, it is uncommon to have access to a perfect model
of the system under consideration. Most real-world scenarios require learning models from
previously collected data—often called o✏ine data. This approach is particularly prevalent
in safety-critical settings, where online data collection may be risky or infeasible (Dulac-
Arnold et al., 2021). In this paper, we address an important challenge arising from the need
to learn models from data: in most real-world problems, the data captured about a given

system seldom includes all relevant information about the state of the system. Consider, for
example, a medical application where it may not be feasible to measure all attributes of
a patient—such as their genetic profile or exposure to pollution—despite these attributes
being potentially relevant in designing appropriate treatments.
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We explore the challenges that emerge due to this partial observability for using models
learned from partially-observable o✏ine data, particularly for policy evaluation. Standard
methods for model estimation developed for the fully-observable case when applied to this
setting may result in arbitrarily inaccurate policy evaluation. We first demonstrate that
models constructed from partially-observable data depend strongly on the policy employed
to gather training data. Crucially, these models cannot be used to reliably evaluate other
policies, as they may yield arbitrarily incorrect return estimates.1 Addressing this challenge
is important since policy evaluation techniques are key building blocks for a wide range of
tasks in reinforcement learning.

In this paper, we introduce a method that uses o✏ine data with partial state informa-
tion (called observations) to construct models that are guaranteed to produce consistent
o↵-policy estimates of the performance of policies of interest. We refer to models over ob-
servations as partial models. Unlike models learned in the fully-observable setting, partial
models are not policy-invariant: even if trained with infinite data, the estimated models
would in general be a function of the policy used to gather training data (Figure 1). To
address this policy-dependence and make the partial models amenable for o↵-policy evalua-
tion, we propose a novel technique for model estimation that integrates importance sampling
(IS) into the model learning process. The approach uses importance weights to reweight
the frequency of the samples in the o✏ine data such that they are reflective of the expected
frequencies with which they would have occurred under the policy being evaluated—rather
than the data-collection policy. The models so learned from o↵-policy partially observable
data are consistent estimates of the o↵-policy models (Theorem 3) and are guaranteed to
produce consistent estimates of the o↵-policy expected return (Theorem 4). We validate
our theoretical results with numerical experiments and empirically demonstrate the e�cacy
of our method and its resilience to standard approximations like weight-clipping on a range
of domains with di↵erent types of partial observability.

2. Problem Setup

Problem Setup: Our goal is to derive models from partially-observable o✏ine data that
o↵er theoretical guarantees for the task of policy evaluation. Specifically, these models
should be guaranteed to yield consistent o↵-policy return estimates. We model this setting
as an episodic partially-observable Markov decision process (POMDP) (Lovejoy, 1991). A
POMDP is tuple (S,O,A, p,⌦, R, d0), where S is a set of states, O is a set of discrete
observations, A is a set of discrete actions, p : S ⇥A⇥ S ! [0, 1] is the transition function,
⌦ : S ! O is the observation function, R : S ⇥ A ⇥ S ! R is the reward function, and
d0 : S ! [0, 1] is the initial state distribution. The underlying unobserved Markov decision
process M is denoted by (S,A, p, R, d0). We assume that the observation function ⌦ is a
many-to-one mapping from states to observations. This aligns with the more general setting
where states cannot be directly inferred from observations.

An o✏ine dataset is constructed by deploying some data-collecting policy, ⇡b : O ⇥

A ! [0, 1], also referred to as the behavior policy.2 The data set consists of n observed

trajectories, D(⇡b)
n , (Hi)

n
i=1, where each Hi is a trajectory (O0, A0, R0, O1, . . .). Notice

1. This phenomenon has been studied in the econometrics literature, where it is known as the Lucas Critique
(Brunner et al., 1983), as well as in recent works in reinforcement learning (Rezende et al., 2020).

2. All our analyses remain valid in scenarios where data is gathered from multiple behavioral policies.
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that trajectories Hi do not contain the underlying states, St, for any time steps t. We

denote the model estimated from the o✏ine dataset, D(⇡b)
n , as M̂ (⇡b)

n , (O,A, p̂n, R̂n, d̂0,n),
where the superscript denotes the policy used for collecting the data used to estimate such

a model. Here, M̂ (⇡b)
n is modeled as a Markov decision process (MDP) over observations,

where p̂n : O ⇥ A ⇥ O ! [0, 1], R̂n : O ⇥ A ⇥ O ! R , and d̂0,n : O ! [0, 1] are the
corresponding maximum likelihood estimates given by:

d̂n,0(o) :=

P
n 1
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(1)

This estimated model is called a partial model since it models transitions between partially
observable states (observations), given an action, along with a reward function that maps
observations to scalars. To perform o↵-policy evaluation (OPE) with these partial models,
we make the support assumption standard in the OPE literature.

Assumption 1 9 " > 0 : (⇡b(o, a) < ") =) (⇡e(o, a) = 0), for all o 2 O and a 2 A.

Notation: The indicator function is denoted by 1{·}, and 1t{·} is the indicator function for
a condition at time t. For example, 1t{o, a, o0} , 1{Ot = o,At = a,Ot+1 = o0}. Asymptotic
convergence targets of finite-sample estimates when n ! 1 are denoted using the subscript
1. For example, M̂1 , (p̂1, R̂1, d̂0,1) denotes limn!1 M̂n. The expected return of a
policy ⇡, deployed on environment M , is denoted by J(⇡;M) = E⇡ [

P
tRt].

3. Challenges Arising from Partial Observability

Estimating models from o✏ine data in the fully observable setting has been widely studied in
reinforcement learning (Janner et al., 2019). The primary challenges in that setting are those
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Figure 1: Policy-dependent partial models.

of partial coverage (Kidambi et al., 2020;
Uehara and Sun, 2021) and the need for
a su�ciently-expressive parametric model
class (Lu et al., 2021). The presence of par-
tial observability in the dataset introduces
challenges orthogonal to the aforementioned
ones, hindering the direct application of ex-
isting methods. The challenges, specifically,
are 1) the policy-dependence of the esti-
mated models, and 2) the subsequent in-
accuracy in o↵-policy evaluation. We eluci-
date both with illustrative examples.
Policy-Dependence: The partial models
(Equation (1)) must be defined in conjunc-
tion with the data-collection policy, as they
are not invariant to changing data-collecting policies. For instance, consider the MDP in
Figure 1, in which a point mass traverses a 2D plane. Two potential trajectories, resulting
from deploying di↵erent policies (⇡1 and ⇡2) are shown. Agent-A can observe all state
features (x and y coordinates of the point mass), while Agent-B, can only perceive the y
coordinates of each trajectory. An o✏ine dataset collected by Agent-A, thus contains in-
formation about complete Markov states of the system, and can be used to learn the true
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underlying model of the MDP (assume full coverage and an expressive model class). On the
contrary, in the dataset collected by Agent-B, the same action from the same observation
may result in di↵erent outcomes, i.e., the next observation and reward, depending on the

data-collecting policy used. Thus the partial model estimated by will be di↵erent for di↵er-
ent data-collecting policies, and must be defined in conjunction with the policy deployed to
collect the o✏ine data.
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Figure 2: Inaccurate o↵-policy evaluation
due to policy-dependence of partial models.

Inaccurate O↵-Policy Evaluation: The
partial models cannot be used to accu-
rately evaluate policies other than the data-
collecting policy. Consider the MDP de-
picted in Figure 2, where the five states are
represented by circles and four observations
by boxes. The observation o2 aliases states
s2 and s3 into a single observation. The
partial reward functions estimated by the
two data-collecting policies, ⇡1 = [au, au]
and ⇡2 = [ad, au], di↵er due to policy-
dependence of the models. Specifically, for
the input (o2, au, o3) the reward esimated by ⇡1 would be R̂(⇡1)(o2, au, o3) = +10, whereas
with ⇡2 it would be R̂(⇡2)(o2, au, o3) = �10. Consequently, using the partial model es-
timated using ⇡1 as the data-collecting policy for evaluating ⇡2 would result in incorrect
return estimates.

4. Our Approach: Importance-Weighted Partial Models

The previous section highlights the challenges posed by partial observability on model learn-
ing and policy evaluation using partial models. Despite the model estimates from di↵erent
data-collecting policies di↵ering, the respective models surprisingly can be used to obtain
consistent and accurate estimates of the expected return for the data-collecting policy itself.

Lemma 2

The result implies that in theory a model estimated from data collected by the evaluation
policy can be used for o↵-policy evaluation. Since the underlying process (M) governing
both partial models is the same, the model parameters estimated from the two policies only
di↵er due to di↵erences in state visitation distribution (Equations (7) and (8)) induced by
a di↵erent policy. We show that the e↵ects of the change in state visitation distribution can
be addressed using importance sampling (Horvitz and Thompson, 1952; Precup, 2000;
Ripley, 2009). To estimate a partial model as seen under the evaluation policy, we want
the probabilities (or, visitation counts of samples) of terms in Equation (1) to be reflective
of those seen when ⇡e is executed. This can be attained by multiplying the indicator terms
by an importance weight ⇢t in Equation (1) to estimate model components.
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where, ⇢it = Pr(Hi
t ;⇡e)

Pr(Hi
t ;⇡b)

=
Qt

j=1
⇡e(Oi

j ,A
i
j)

⇡b(Oi
j ,A

i
j)
. This method for estimating importance-

weighted (o↵-policy) partial models is abbreviated as IWPM . The model estimates in
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Equation (2) asymptotically converge to the partial model induced by ⇡e (Theorem 3) and
can thus be used for consistent o↵-policy return estimation (Theorem 4).

Theorem 3 The importance-weighted partial model M̂ (⇡e;IWPM)
n is a consistent estimator

of the model M̂ (⇡e)
1 estimated from D(⇡e)

1 , i.e., M̂ (⇡e;IWPM)
n

a.s.
�! M̂ (⇡e)

1 .

Theorem 4 Using the importance-weighted partial model M̂ (⇡e;IWPM)
n to evaluate ⇡e is

guaranteed to provide consistent estimates of its true expected return, i.e.,

J(⇡e; M̂
(⇡e;IWPM)
n )

a.s.
�! J(⇡e;M).

The proofs for all results may be found in the Appendix. To our knowledge, this is the
first method that addresses the problem of model-based o↵-policy evaluation using o✏ine
partially observable data without any additional assumptions.

5. Empirical Evaluation

First, we conduct diagnostic experiments providing intuition for our theoretical results
and an understanding of the properties of our method. Then we proceed to evaluate the
e↵ectiveness of importance-weighted partial models for o↵-policy evaluation across domains
with diverse kinds of partial observability. Experimental details, along with descriptions of
the domains, can be found in the Appendix.

Figure 3: Diagnostic experiments on (top) KMarkovGraph and (bottom) PointEnv.

Diagnostic Experiments: These are conducted on two domains: a k-th order POMDP
structured graph, KMarkovGraph, and a 2D point navigation environment, PointEnv.

(a) Policy-dependence of partial models: The maximum likelihood model p̂(⇡)n (Equation
(1)) is estimated from o✏ine datasets collected by executing di↵erent policies ⇡(↵) = ↵⇡b +
(1�↵)⇡e that interpolate between ⇡b and ⇡e, with ↵ 2 [0, 1]. The model mismatch error—

measured by the total variation distance—between p̂(⇡
(↵))

n and p̂(⇡e)
n , the ground truth model

estimated from o↵-policy dataD(⇡e)
n , as a function of ↵ showcases that the policy dependence

in Figure 3 (a). As the policy increasingly deviates from ⇡e with increasing values of ↵, the
model mismatch error also increases.
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(b) Consistency of the importance weighted partial model: The size (n) of the o✏ine dataset

D
(⇡b)
n used for estimating the importance-weighted partial model p̂(⇡e;IWPM) is varied. It is

observed that model error decreases with increasing n, as expected.
(c) E↵ect of weight clipping: To test the sensitivity of model estimation to weight clipping,
we vary the weight clipping factor c used for computing importance weights. For smaller
values of c, we would expect to see higher bias, but lower variance in estimation and the
opposite for larger values as is seen in the plot for PointEnv. Due to the k-th order Markov
nature of KMarkovGraph, values of c < k incur model error in estimation while values
greater than c result in negligible model error.

Figure 4: Mean-squared-error for OPE using IWPM, for varying n.

O↵-Policy Evaluation: To contextualize our results we compare against naively estimat-

ing partial models that are maximum likelihood model estimates from D
(⇡b)
n , labeled Naive

PM. A comparison with model-free estimators can be found in the Appendix. We evaluate
IWPM with varying levels of weight clipping, labeled as IWPM-Clip-c, where c denotes the
weight clipping factor. For our experiments, we use environments from various OPE bench-
marks: (a) Graph-POMDP (Voloshin et al., 2021), (b) Stateless Cartpole (Morad et al.,
2023), and two Atari games (c) Asterix, and (d) Breakout from the MinAtar testbed (Young
and Tian, 2019). Results in Figure 4 indicate that the naive method incurs an irreducible
bias in most domains since it relies on a model that is a function of ⇡b while evaluating ⇡e.
For IWPM, we observe that weight clipping often aids the performance of the method due to
lower variance in estimation and allows the method to scale up to long horizon problems—
for instance, the Asterix domain has an average episode length of approximately 100. As
indicated by the standard error bars, the method exhibits low variance in estimation. We
report these results for di↵erent sizes of the o✏ine dataset, and as expected the estimates
get increasingly accurate with larger dataset size n. Thus IWPM presents a viable approach
for conducting model-based o↵-policy evaluation under partial observability.

6. Conclusion

In this paper, we consider the problem of model estimation and o↵-policy evaluation from
o✏ine data with partial observability. We highlight the challenges posed by partial ob-
servability for the task that renders existing methods ine↵ective. We propose a model
estimation procedure that incorporates importance weights to address those challenges. We
empirically validate our theory and the e�cacy of our method for o↵-policy evaluation on
partially-observable domains, and see it scale to long horizons.
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